skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Zhenhua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The creation of metal‐metal oxide interfaces is an important approach to fine‐tuning catalyst properties through strong interfacial interactions. This article presents the work on developing interfaces between Pt and CeOxthat improve Pt surface energetics for the hydrogen evolution reaction (HER) within an alkaline electrolyte. The Pt‐CeOxinterfaces are formed by depositing size‐controlled Pt nanoparticles onto a carbon support already coated with ultrathin CeOxnanosheets. This interface structure facilitates substantial electron transfer from Pt to CeOx, resulting in decreased hydrogen binding energies on Pt surfaces, and water dissociation for the HER, as predicted by the density functional theory (DFT) calculations. Electrochemical testing indicates that both Pt specific activity and mass activity are improved by a factor of 2 to 3 following the formation of Pt‐CeOxinterfaces. This study underscores the significance and potential of harnessing robust interfacial effects to enhance electrocatalytic reactions. 
    more » « less
  2. Electroreduction of carbon dioxide (CO2) or carbon monoxide (CO) toward C2+hydrocarbons such as ethylene, ethanol, acetate and propanol represents a promising approach toward carbon-negative electrosynthesis of chemicals. Fundamental understanding of the carbon─carbon (C-C) coupling mechanisms in these electrocatalytic processes is the key to the design and development of electrochemical systems at high energy and carbon conversion efficiencies. Here, we report the investigation of CO electreduction on single-atom copper (Cu) electrocatalysts. Atomically dispersed Cu is coordinated on a carbon nitride substrate to form high-density copper─nitrogen moieties. Chemisorption, electrocatalytic, and computational studies are combined to probe the catalytic mechanisms. Unlike the Langmuir-Hinshelwood mechanism known for copper metal surfaces, the confinement of CO adsorption on the single-copper-atom sites enables an Eley-Rideal type of C-C coupling between adsorbed (*CO) and gaseous [CO(g)] carbon moxide molecules. The isolated Cu sites also selectively stabilize the key reaction intermediates determining the bifurcation of reaction pathways toward different C2+products. 
    more » « less